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by

Persi Diaconis and Mehrdad Shashahani

Department of Statistics, Stanford University

Abstract

When can a probability P be factored as P 1 *P 2
? This problem arises

in efficient generation of pseudo random integers and permutations. It is

thus natural to think of P defined on a group. We show that any strictly

positive measure can be factored. The uniform distribution can be factored

in a non-trivial way for any compact group having more than three elements.

If it is required that U = P* P , then factorization is possible if and only

if the group is not Abelian or the product of the quarternions and a finite

number of two element groups.



1. Introduction

Let P be a probability measure on the Borel sets of a locally compact

topological group. Following Levy (1953), we say that P is decomposable

if P can be written as a convolution P - PI* P2 with Pi not fixed at

a point. The study of decomposable probability arises naturally in applied

problems.

These problems include computer generation of pseudo-random uniform var-

iables on a finite group such as the integers (mod n) or the permutations.

Application is also made to the study of the distribution of nonparametric

measures of correlation. Applications are discussed in Section 2. In Section

3 we show that any positive measure on a compact group is decomposable.

The uniform distribution U on a compact group requires special treat-

ment because of the trivial factorization U - U *P , for any P. We say that

U is semi-decomposable if U - P1 * P2 with P not uniform. In Section 3

we show that U on any compact polish group is semi-decomposable unless the

group has two or three elements.

If restrictions are put on Pi . then factorization may not be possible.

For example, if P(A) = P(A- 1 ) , then U = P* P is never possible. The fac-

torization U = P* P is never possible on Abelian groups, but is possible

on most non-Abelian groups. Indeed, it is shown that U- P *P for all groups

different from a product of the quarternions and a finite number of two element

groups. We also study the possibility of factorization when P is restricted to

be spherically symmetric with respect to a subgroup forming a Gelfand pair.

A motivated introduction to probability on groups is in Grenander (1963).

For a comprehensive treatment see Heyer (1977) or Hewitt and Ross (1963),

(1970). A nice discussion of factorization on IR is in Chapter 6 of Lukas

(1970).
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2. Some Applications

This section describes some applied problems in which factorization

plays a role.

Example 1. Generating random permutations.

For generating random bridge hands, Monte Carlo investigation of rank

tests in statistics, and other applications, a source of pseudo-random per-

mutations of n objects is useful. If n is small, a useful approach is to

set up a 1-1 correspondence between the integers from I to n! and permu-

tations and then use a source of pseudo random integers. The factorial num-

ber system is sometimes used for this purpose, see page 64 and 192 of Knuth

(1981). For larger n , like 52, the most frequently used algorithm in-

volves a factorization of the uniform distribution. Informally, at the ith

stage a random integer Ji between i and n is chosen and i and Ji

are transposed. Call the probability distribution at the ith stage Pi ' it

will be shown below that PI*P 2  ... I *P n- is a factorization of the uni-

form distribution. Further discussion of this algorithm is on pp. 139-141

of Knuth (1981). The factorization has recently been applied in the theore-

tical problem of finding the order of a random permutation by Bovey (1980).

It also forms the basis of fast algorithms for manipulating permutations.

See Furst et al. (1980). The following algorithm abstracts the idea to any

finite group.

Subgroup algorithm. Let G be a finite group. Let G0 a GZDG I Z...Gr

be a nested chain of subgroups, not necessarily normal. Let Ci be coset

representatives for Gi+l in Gi 1 0 < i < r. Clearly G can be represen-

ted as G xC 1 x ... x C x Gr  in the sense that each g e G has a

unique representation as gogl ... gr-igr with gi c Ci and gr c Gr"
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Let Pi be the uniform distribution on Ci and Gr respectively. The

convolution P1 *P 2 * "" * Pr is then a factorization of the uniform dis-

tribution on G.

Specializing to the symmetric group, consider the chain

Sn D Sni ) Sn-2 =.... {id}. Here Sn± i is represented as the set of

permutations of n letters that fix the first i letters. Then, coset re-

presentatives Ci can be chosen as the set of transpositions transposing i

and letters larger than i. The subgroup algorithm suggests a class of algo-

rithms that interpolate between the factorial number system and random trans-

positions: Let S n Z S ... =s with n > nI > ... > n . Here the

size of the cosets C i are allowed to get large and a variant of the fac-

torial number system permits choice of a random coset element from a random

integer. For example, consider the chain Sn  Sn-2  S n4 ... ={id).

Coset representatives for Sn-2(i+l) in Sn_2i are permutations bringing

a pair of elements between i+l and n into positions i+l and 1+2.

These permutations may be ordered lexographically, setting up a 1-1 cor-

respondence between them and numbers 1, 2, ..., (n-i)(n-i-l). An advantage

of this method is that it requires fewer calls to the random number generator.

The subgroup algorithm can be used to generate random positions in the

currently popular Rubick's cube puzzle.

A different application of the factorization suggested by the subgroup

algorithm is to computer generation of pseudo-random integers (mod N). Given

two sources of pseudo-random integers X and Y , computer scientists some-

times form a new sequence Z - X+Y (mod N). Knuth (1981, p. 631) contains

a discussion of work by Marsaglia and others. Solomon and Brown (1980) show

that this procedure brings Z closer to uniform. Marshall and 01kmn (1980,
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p. 383) generalize this to any finite group. It is natural to seek distribu-

tions of X and Y such that Z is exactly uniform. The subgroup algorithm

does this when N is composite. For N prime, see Lemma 2 in Section 3.

Example 2. Nonparametric measures of association.

A wide variety of nonparametric measures of association arise from me-

trics p on the permutation group Sn . Typical choices are p(r',n) =

{E(Tl(i) - n(n)) } (Spearman's rank correlation), or the minimum number of

pairwise adjacent transpositiods it takes to bring iT to 7r' (Kendall's tau).

For a survey, see Diaconis and Graham (1977). Most naturally occurring metrics

are right invariant:

p(7r'n, fTn) = p(nT', 7T) = p(id, 7i' -I 1 )

If iT' and 1T are chosen uniformly from Sn , then the distribution of

P(iT',w) is the same as the distribution of p(id,U) , where U is a random

permutation. It is natural to ask if -ir can be uniform under other

assumptions on the distribution of (1',T). For example, if 7T', 7r are

chosen independently from the same non-uniform distribution, it is shown in

Theorem 3 of Section 4 that rw_1  is not uniform. The subgroup algorithm,-ll
or Theorem 5 in Section 4, show that 717-I can be uniform if 7r' and it

are merely independent.

3. Decomposable and Semi-decomposable Probabilities

Decomposable probabilities.

Throughout, P is a probability on the Borel sets of a compact topolo-

gical group. The probability P is decomposable if P can be decomposed

4



II

as a convolution P - P1 * P2 with Pi not fixed at a point. This definition

rules out the trivial decomposition P P1 * 6 with 6 a point mass at

group element g and P1 
= P* - Levy (1953) gave a nice example of a

g

measure which is not decomposable: Take the group as S3 , fix p in (0,1)

and let P put mass p on the identity and mass (l-p) on a 3-cycle. It

is not hard to show that the set S of support points of P is not of the

form S - 1S 2 with Si of cardinality 2 or more, so P is not decompo-

sable. The following result shows that if P << dg with a positive continuous

density, then P is decomposable.

Theorem 1. Let G be compact; let P = fdg with f > E > 0. Then P

is decomposable.

Proof. Suppose f > c > 0. Let probability measures Pi be defined by

P 1 f d {6 + E 2dg }

1 14 f
1  P 2 - i+E 2  

6 id 2

with e chosen so Ei+2 +C 2 = 0; e.g., 1 = -C2/(i+2 and £2

chosen positive but so small that Pi > 0. Then

P* P2 = fdg + {ei + C2 + EI e 2
} dg - fdg .

Remarks. In the case of finite groups, this gives an easy proof of a theorem

of P. J. Cohen (1959). Cohen showed that if the density f is continuous,

then the measures Pi can be chosen to have densities. Note that in our

construction P2  is not absolutely continuous with respect to dg when G is

infinite. Cohen gives an example of a probability density on a compact subset

of IR which cannot be written as a convolution of two probabilities with den-

sities. An earlier example of Levy and a review of the literature on IR appear in

5
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chapter 6 of Lukacs (1970). Lewis (1967) shows that the uniform distribution

on 10,I] cannot be written as a convolution of two probabilities with den-

sities. It is well known that the convolution of singular measures can have

a density. See Rubin (1967) and Hewitt and Zukerman (1966) for some examples.

Semi-decomposable probabilities.

Turn now to decomposing the uniform distribution U on a compact group.

The subgroup algorithm of Section 2 gives any easy method for decomposing

the uniform distribution on a finite group. Consideration of the circle

group and the subgroup of kth roots of unity suggests that the result genera-

lizes:

Lemma 1. Let G be a compact, Polish group with a closed subgroup H.

Then, the uniform distribution is semi-decomposable.

Proof. Let r :G - G/H be the cannonical map. Let Q be the image of the

uniform distribution under 7T. Take a measurable inverse : G/H - G with

the property that fT 4{gHl = {gH}. The existence of P under our hypothesis

follows from Theorem I in Bondar (1976). Let P1  be the image of Q under

0. Let P2  be the uniform distribution on H. To prove that P1 * P2  is

uniform, consider any continuous function f on G. By definition

Jf(g) P I* P2(dg) f(12 PldG~p JCg2 fH)g Hldl P d
G ~~ ~~fG) GU(GH dg) l 2 ) d 2

The final equality in the display follows from Theorem 2 in Bondar (1976).

We next show how to decompose the uniform distribution on groups with no

proper subgroups: the integers mod a prime. It is easy to see that the
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uniform distribution is not semi-decomposable on Z2  or Z3 . One approach

2
uses the fact that l+z and 1+z +z are irreducible over the reals

factorization of U leads would lead to a factorization of the associated

polynomial.

Lemma 2. Let p > 5 be prime. Let Zp be the integers mod p. Then

the uniform distribution is semi-decomposable.

Proof. For i 1 1, 2, , -1 let a b be determined by

2 ' i I l

ai +2b i = 1 , ai +2 bi Cos -- 0

(2 n i 2 \Noting that cos -p J ,1 for i in the indicated range;

b- 2r i2 2_ i / 2 7T 2
P 2 l - cos 2J' ai  -cos 2 Ti 1 - cos -

Define signed measures Qi on Zp by

Qi(O) = a i , Qi(i) = Qi(-i) = bi , Qi(j) = 0 otherwise

The argument depends on the discrete Fourier transform of a measure. If P

is a measure on Z and k e Z , define
p p

1 ( 1 P(j)e21ijk/p

For the uniform distribution,

if k- 0

Pk(U) 0 otherwise

7
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It is easy to check that for k 0 0, P+k(Qk) = 0, PO(Qk) = 1. Now let

signed measures R1 and R2 be defined by

a (p-l) /2
RI fi* ' R2  * i for fixed 1 < a < (p-l)/2.

1=1 i-a+l

Finally, for sufficiently small c the measures U + cRI and U + ER2  are

positive measures and can be normed to be probabilities, say PI and P2.

We claim U = P1 * P2. Indeed, for k 0 0, pk(Pl* P2) = Pk(P1) k(P 2) = 0.

To show that the decomposition is non-trivial, it suffices to show that R i

are non-zero, i = 1, 2. This follows from the fact that for k j j

Sj(Qk ) ' 0. Indeed,

Pf(Qk) = ak + 2 bk cos(2 T - k)

1 o(U rk 2) + Cos(27Tj
1 - cos(2 1T k2 )L

This is zero if and only if j = k. fl

Remarks. Factoring the uniform distribution on Z is sufficiently close to

some classical factorization results to warrant discussion. A well known ele-

mentary probability problem argues that it is impossible to load two dice so

that the sum is uniform. More generally, Dudewicz and Dann (1972) show that

it is impossible to find probabilities P1 and P2 on the set {1, 2, ..., n}

such that PI *P2 is the uniform distribution on {2, ... , 2n. A related

result asks for a decomposition of the uniform distribution on the set

0, 1, 2, ... , N. Lukacs (1970), pp. 182-183, reviews the literature on this

problem. He shows factorization is possible when, and only when, N is

8
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prime. The difference bEtween the three results is this: In Lemma 2, and

in the subgroup factorization, addition is (mod N). In the dice result,

both factors must be supported on {, ..., n} while the uniform distribution

is on {2, ..., n). In the results reported in Lukacs, the factors are per-

mitted to have arbitrary support.

The results above can be combined into the following.

Theorem 2. The uniform distribution on a compact Polish group G is semi-

decomposable unless G is Z2 or Z3 .

Proof. For finite groups, Lemma 2 and the subgroup algorithm prove the claim,

since a finite group with no proper subgroups is the residues of a prime. We

now argue that every infinite compact group contains a closed non-trivial sub-

group. A topological group has no small subgroups (NSS) if there exists a

neighborhood U of the identity such that the only subgroup in U is {id).

Clearly, a group which has small subgroups contains non-trivial closed sub-

groups. A famous theorem of Gleason (1952) implies that a group with NSS is

a Lie group. The structure of compact Lie groups is well known; see, for ex-

ample, Chapter 11 of Pontryagin (1966): If G is Abelian, then the connected

component of the identity is a finite dimensional torus which certainly has

non-trivial closed subgroups, hence G does. If C is not Abelian, then

its maximal torus is a non-trivial closed subgroup.

4. Restricted Factorizations

The results in Section 3 show that in most cases, the uniform distribu-

tion can be factored. In this section the factors are restricted in some way.

The first result introduces material on representations which will be used

throughout this section.
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Difference distributions.

Let P be a probability on a group. Let P(A) : P(A- ). Example 2 of

Section 2 gives some motivation for considering factorizations of the form

P*P.

Theorem 3. On a compact group, if U = P*P , then P = U.

Proof. The argument uses the basic facts about representations of compact

groups. See Chapter 4 of Serre (1977) for a review. We need the following

facts. A representation p is a continuous map from G into GLd (V) for a
dP

complex vector space V of dimension d . The matrices p(g) can all be

chosen as unitary: p(g) p(g) = id , where the * means conjugate transpose.

A representation is irreducible if the matrices {p(g)}gEG leave no non-trivial

subspace of V invariant. The transform of a probability P on G at repre-

sentation p is p(P)= G P(g) P(dg). The matrices {P(P)}pcG , as p ranges

over the finite dimensional irreducible representations, determine P. If p

is non-trivial, P(U) = 0. With these facts, the proof is easy. For a unitary
p-l) -lg*-i

representation p(g = p(g) = p(g) . Thus p(P) = p(P) . If P* P= U , then

0- p(U) = P(P*P) = P(P) PCO) = P(P) p(P)*. Thus p(P) = 0 for all non-trivial

irreducible representations, so P = U. [

Square roots.

On a compact Abelian group the factorization U = P* P is impossible

unless P is uniform. This follows because all irreducible representations

are one-dimensional and 0 - p(U) - p(P* P) - p(P)2  implies p(P) - 0. For

non-Abelian groups, things are more complex.

Example 3. On S3 a square root P of U can be defined as follows:

using cycle notation for permutations let

10



P(id) , P(12) - -, P(23) - +h, P(31) - -h, P(123) - -h, P(132) - +h

for any h with 0 < h < 1

To motivate Theorem 4, let us explain how this example was found. We

2
seek a probability P on S3  such that p(P) . 0 for each non-trivial

irreducible representation p. Let us find a function f on S3  such that
1

p(f) = 0 for all irreducible p and then P(7T) - + Ef(n) , with c chosen

small enough that P(iT) > 0 will do the job. There are three irreducible

representations of S3 , the trivial representation pt , the alternating

representation Pa , and a two-dimensional representation p2 . If p2(f)

is a non-zero nilpotent matrix P Mf = 0~ ~ and pM= P (f) =0
20

then p2(f) E 0. This gives five linear relations for the six numbers f(7).

The example above resulted from solving these equations. The following

theorem gives a generalization.

Theorem 4. Let G be a compact, non-commutative group. The following

conditions are equivalent.

a) There is a probability measure P 4 U such that P* P U.

b) There is an irreducible representation p of G such that the

algebra RP M 1Z gcG P(g)} contains nilpotent elements.

Remark. The quaternions +l, ti, ±j, k form a finite non-commutative

group such that the uniform distribution does not have a non-trivial square

root. This follows from Theorem 5 below which identifies all finite groups

satisfying condition b).

The proof of Theorem 4 requires some notation. Throughout we assume

that all irreducible representations are given by unitary matrices. If p

is a representation, let 0(g) be defined as 5(g) - p(g 1 )'. The follow-

ing lema is used in the proof of Theorem 4.

-X.



Lemma 3. Let P be a bounded measure on a compact group G. Then i

is real if and only if p(p) = p(p) for every irredicuble p.

Proof. If V is real, then

Oi (P) = f ( g ) p(dg) = pij(P)

Conversely, suppose p is a measure such that P(P) = P(P). This means

0 f P1,(g) ii(dg) f P1ij(g) ii(dg)

or

0 f pli(g) j(dg) - f p%(g) .(dg)

Since this holds for every irreducible p , the Peter-Weyl theorem implies

that the set function - i is zero, so P is real.

2
Proof of Theorem 4. If U = P* P , then p(P) = 0 and p(P) -0 0 for some

p because P 0 U. Thus Rp, has nilpotents. Conversely, let y1 E Rp,
n

be nilpotent. If Y1 , 0 and n is the smallest such power, then set

n-l This is non-zero and = 0. Define a continuous function f on

G as follows. Set p(f) - 0 if p p* or *, p*(f) - y , and if p* is

not equivalent to , *(f) = j. This defines a non-zero continuous function

f through the Peter-Weyl theorem. Because of Lemma 3, f is real. Clearly,

p 2 . 0 for all irreducible p. It follows that for C suitably small,

P - (1+ ef(g))dg is a probability satisfying P* P - U. LI

A sufficient condition for Theorem 4 is that G have a real repre-

sentation of dimension 2 or greater: If p* is an n-dimensional real re-

presentation, let f(g) c p n(g) . Then by the Schur orthogonality relations,

12



for any P P 0*, P(f) 0. Also, Schur's relations imply p*(f) is an nxn

matrix which is zero except that the 1, n entry is E f P 2 dg > 0. Thus

2P*(f) = 0. Let a probability P be defined by P - (1+cf)dg , with c cho-

sen so that P is positive. Then p(P* P) - p(U) for all irreducible repre-

sentations. As an example, the adjoint representation of a compact simple lie

group has a basis with respect to which it is real orthogonal. Thus, the group

S0(n) of proper notations for n- 3 , and n > 5 admits a square root of U.

The next result classifies all finite groups such that the uniform dis-

tribution is semi-decomposable.

Theorem 5. The uniform distribution on a finite group C is semi-decom-

posable if and only if G is not Abelian or the product of the quarternions

and a finite number of two-element groups.

Proof. It was argued above that Abelian groups do not admit a non-trivial

square-root of the uniform distribution. In light of Theorem 4, the non-Abelian

groups with the property that R (G) has no nilpotents must be classified. We

will use a lemma of Sehgal (1975). Some notation is needed. Let P denote

the rational numbers, and let Q(G) , the rational group ring denote the set

of formal linear combinations of elements of G with rational coefficients.

A non-Abelian group in which every subgroup is normal is called Hamiltonian.

Theorem 12.5.4 of Hall (1959) shows that every Hamiltonian group is of the

form G - A x B x H , where A is an Abelian group of odd order, B is a

product of a finite number of two-element groups, and H is the eight element

group of quarternions {±, ±i, ±J, ±k). The following lemma has been ab-

stracted from Sehgal (1975). The result also appears in Pascaud (1973).

Lemma 3 (Sehgal). If Q(G) has no nilpotents, then G is Hamiltonian.

13
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Proof. Observe first that if R is any ring with unit and no nilpotents,

2
then an idempotent e e in R commutes with every element of R. In-

deed, the equation 0 = [er(l-e)] 2  implies er(l-e) - 0 , so er = ere.

Similarly, re - ere - er. Now let R - Q(G) , let H be a subgroup of G
1 -i

and set e=-j1 j hcH h. It follows that for each g E G, geg = e and this

implies that for each h c H, ghg - 
E H , so H is normal.

Proof of Theorem 5. map Q(G) into R p(G) by mapping g t+ p(g) and extend-

ing by linearity. This is an algebra homomorphism. We thus get a map from

Q(G) into H0 R (G). From Proposition 10 of Serre (1977) this map is 1-1.

Since no R (G) has nilpotents, neither does q(G). Lemma 3 implies that G

has the form G - A x B x H where A is an Abelian group of odd order. If

A is not zero, choose a character X taking at least one complex value. Let

p be the irredicuble representation of H which sends it+ [0 i] and

j 1+ [ -1. Then x ® P is an irreducible two-dimensional representation

so R X®(G) consists of all 2 x 2 matrices, with complex entries, and so

contains nilpotents.

Spherical functions.

As Theorem 5 shows, the uniform distribution on many non-commutative

groups has non-trivial square roots. We now show that if some symmetry re-

strictions are put on the factors, then roots do not exist. Let G be a

compact group and H a closed subgroup. A probability p on G is spherical

if U(h1Ah2) - m(A) for all measurable A in G and hl, h2 E H. Spherical

functions are the object of intensive study in modern harmonic analysis. See

Dieudone (1978) for an extensive treatment. The pair (GH) is called a

Gelfand pair if the algebra of L2  spherical functions is commutative. Many

examples of Gelfand pairs in probability are discussed in a very useful survey

14



by Letac (1981). Compact lie groups G and their maximal compact subgroups

H form Gelfand pairs, so the proper rotations S0(3) and the rotations fix-

ing a point are a concrete example. The group G - Sn and subgroup Snl

form a Gelfand pair. There is a well developed transform theory for Gelfand

pairs based on zonal-spherical functions. These are spherical functions s

on G with the property that

J s(g) V1* V2 (dg) J s(g) pil(dg) f s(g) P2 (dg)

for any spherical probabilities pi" The theory shows that there are enough

spherical functions to determine a measure and defines (s) - f s(g) p(dg).

It now follows as in the Abelian case that the uniform distribution on a

compact group G does not admit non-trivial square roots which are spherical

with respect to a subgroup H such that (G,H) form a Gelfand pair.
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